HEPTAVALENT SYMMETRIC GRAPHS OF ORDER 6p
نویسندگان
چکیده
A graph is symmetric if its automorphism group acts transitively on the set of arcs of the graph. In this paper, we classify connected heptavalent symmetric graphs of order 6p for each prime p. As a result, there are three sporadic such graphs: one for p = 5 and two for p = 13.
منابع مشابه
Classifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملClassifying cubic symmetric graphs of order 8p or 8p2
A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, we classify the s-regular elementary Abelian coverings of the three-dimensional hypercube for each s ≥ 1 whose fibre-preserving automorphism subgroups act arc-transitively. This gives a new infinite family of cubic 1-regular graphs, in which the smallest one has order 19 208. As an application...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کامل4-valent graphs of order 6p admitting a group of automorphisms acting regularly on arcs
In this paper we classify the 4-valent graphs having 6p vertices, with p a prime, admitting a group of automorphisms acting regularly on arcs. As a corollary, we obtain the 4-valent one-regular graphs having 6p vertices.
متن کامل